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Abstract

Biological networks are ubiquitously modular, a feature that is believed to be essential for the enhancement of their functional
capacities. Here, we have used a simple modular in vitro design to examine the possibility that modularity enhances network
functionality in the context of input representation. We cultured networks of cortical neurons obtained from newborn rats in vitro on
substrate-integrated multi-electrode arrays, forcing the network to develop two well-defined modules of neural populations that are
coupled by a narrow canal. We measured the neural activity, and examined the capacity of each module to individually classify (i.e.
represent) spatially distinct electrical stimuli and propagate input-specific activity features to their downstream coupled counterpart.
We show that, although each of the coupled modules maintains its autonomous functionality, a significant enhancement of
representational capacity is achieved when the system is observed as a whole. We interpret our results in terms of a relative
decorrelation effect imposed by weak coupling between modules.

Introduction

Brain architecture is inherently modular, being composed of local
networks that are embedded in networks of networks, which are sparsely
connected to each other (Mountcastle, 1997; Rockland, 1998; Schreiner
et al., 2000; Erdi & Kiss, 2001; Ferrarini et al., 2009; Meunier et al.,
2010). Extensive electrophysiological and imaging analyses in vivo
suggest that brain modularity is a key determinant of our cognitive
capacities, having impacts on both dynamic and functional aspects of
neural activity (Hubel &Wiesel, 1977; Sporns et al., 2000; Derdikman
et al., 2003; Diamond et al., 2003; Op de Beeck et al., 2008; Kumar
et al., 2010; Pan et al., 2010; Boucsein et al., 2011). Although very
informative, these in vivo analyses do not allow for well-controlled
manipulation of structural and temporal constraints on the dynamics and
functions of modular networks, limiting the generalizability of findings.
In recent years, in vitro technologies supported by advanced substrate
patterning methods have made it possible to force neural networks to
develop a range of predefined modular structures. While far from being
‘real’ brains, these in vitro designs have proved useful in studies aimed at
the characterization of activity dynamics in modular networks. In
particular, such studies have demonstrated that modular networks
exhibit a large repertoire of reoccurring activity patterns (Raichman &
Ben-Jacob, 2008), as well as the dependency of activity propagation on
the density of projections that couple two adjacent modules (Maeda
et al., 1995; Feinerman et al., 2005, 2008; Yvon et al., 2005; Berdon-
dini et al., 2006; Rutten et al., 2007; Baruchi et al., 2008; Dworak &
Wheeler, 2009; Massobrio et al., 2009; Shein et al., 2009; Wheeler &
Brewer, 2010; Pan et al., 2011).

Here, we took advantage of the in vitro modular system in order to
investigate a functional aspect of modularity. As pointed out by others
(Tononi & Edelman, 1998; Zeki & Bartels, 1998; Hartwell et al., 1999),
functionality in modular systems depends on a tradeoff between
differentiation and integration; that is, a tradeoff between the requirement
to maintain the functional separation and autonomy of each module in
itself, and allowing for functional integration of the modular system as a
whole, by which enhancement of functional capacities is achieved. We
haveapproached the above tradeoff in the contextof aminimal system that
is composed of two coupled neural modules, focusing on aspects of a key
function thatneural networks arebelieved to realize, that is, representation.
We coupled two large-scale networks of cortical neurons in vitro

through a narrow connecting path, and recorded evoked spiking
activity by using multi-electrode array (MEA) technology. We
examined the capacity of each network (module) to individually
distinguish between input sources and propagate input-specific activity
features to its ‘downstream’ coupled counterpart. We demonstrate that
each of the modules has the capacity to be active, and to process and
represent its own input sources in an independent manner, in
accordance with the differentiation aspect of modularity. We further
demonstrate an instantiation of the integrative aspect of modularity by
showing that a downstream module can enhance the representational
capacity of the system by amplifying the differences between response
features of the upstream (stimulated) module.

Materials and methods

Culture preparation and modular design

The experimental design was approved by the Inspection Committee
on the Constitution of the Animal Experimentation at the Technion.
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Cortical neurons were obtained from newborn rats (Sprague–Dawley)
within 24 h after birth, with standard procedures (Marom & Shahaf,
2002). Prior to dissection, rats were deeply anesthetized with CO2. The
brains were removed, and the cortex tissue was digested enzymatically
with 0.05% trypsin solution in phosphate-buffered saline (PBS) (Dul-
becco’s PBS) free of calcium andmagnesium, supplementedwith 20 mm

gucose, at 37 �C. Enzyme treatment was terminatedwith heat-inactivated
horse serum (Biological Industries, Beit-Haemek, Israel), and cells were
then mechanically dissociated. Dissociated neurons were suspended in
minimal essential medium, supplemented with heat-inactivated horse
serum (5%), glutamine (0.5 mm), glucose (20 mm), and gentamicin
(20 lm). A few hours before cells were plated on the MEA [MultiChan-
nelSystems (MCS), Reutlingen, Germany], the MEA surface was coated
with laminin (Sigma, St. Louis,MO,USA), and themodular structure (see
below) was installed. The cells were then plated in each module at a
similar density (� 500 cells ⁄mm2). One day later, after cells had adhered
to theMEA,1.5 mLof growthmediumwas added.The preparationswere
allowed to develop and mature over a time period of 15–21 day in vitro
prior to the experiments. Variability in the number of culture days in this
range had no effect on the observed results. The cultures were maintained
in an atmosphere of 37 �C, 5% CO2 and 95% air within the incubator, as
well as during the electrophysiological measurements.
The modular structure was prepared from polydimethylsiloxane

(PDMS) (Sylgard 184; Dow-Corning, Midland, MI, USA), with
photoresist and chemical etching techniques, following Dworak &
Wheeler (2009), and slightly modified for our needs; see also Korin et al.
(2007). The structure consisted of two wells (modules); the area of each
module was 4 mm2, and the two modules were connected by a
200 · 800-lm canal. The PDMS structure was aligned onto the MEA
with a drop of 70% ethanol, and placed on a hot plate at 40 �C for 2 h to
allow reversible binding to the surface. MEAs of 60 Ti ⁄Au ⁄ TiN
electrodes, 30 lmindiameter each,were used. The array design consisted
of four clusters (zones) of 13 electrodes, symmetrically located (two in
each module) and separated from each other by 1 mm. Electrodes within
each of these four zones were spaced 200 lm from each other (Fig. 1A).

Fluorescent labeling of fibers

The fluorescent dye DiD (1,1-dioctadecyl-3,3,3,3-tetramethylindodi-
carbocyanine, 4-chlorobenzenesulfonate; Invitrogen, Carlsbad, CA,
USA) was applied by microinjection, according to Ziv & Smith
(1996), in a sterile environment. Following staining, the cultures were
gently washed to remove excess dye, and maintained at 37 �C in an
atmosphere of 5% CO2 and 95% air for 3 days to allow diffusion of
the dye. Scanning fluorescence and DIC images were acquired with a
custom-designed confocal laser scanning microscope based on a Zeiss
Axiovert 200, using a · 40 1.3-NA Fluar objective, as described
previously (Tsuriel et al., 2006). DiD was excited by means of a 632-
nm helium neon laser, and fluorescence emissions were read with the
use of 650-nm-long-pass edge filters (Semrock, New York, USA). In
these imaging experiments, special thin glass MEAs were used, which
are different from those used for electrophysiological measurements.
Data were collected sequentially from multiple predefined sites across
the entire modular network with custom software, and stitched
according to Rankov et al. (2005). Non-linear contrast enhancement
(gamma adjustment) was used to emphasize the labeling.

Measurements and stimulation

A commercial 60-channel amplifier (B-MEA-1060; MCS) with
frequency limits of 150–5000 Hz and a gain of · 1024 was used. In

experiments involving stimulation, current or voltage stimuli (200-ls
biphasic 10–50 lA or monophasic 600–800 mV) were generated with
a dedicated stimulus generator (MCS). In the context of this study, no
difference was observed in the behavior of neurons under current or
voltage stimulation. The stimuli were delivered once every 15–20 s, to
minimize adaptation of the network response. Data were digitized with
either two parallel 5200a ⁄ 526 A ⁄ D boards (Microstar Laboratories,
Bellevue, WA, USA) after further amplification by MCPPlus variable
gain filter amplifiers (Alpha Omega, Nazareth, Israel), or the USB-
ME256 system (MCS). Each channel was sampled at a frequency of
24 000 samples ⁄ s, and prepared for analysis with the alphamap

interface (Alpha Omega), or mc-rack software (MCS) and an open
source matlab toolbox (Egert et al., 2002). Thresholds for spike
detection ( · 8 RMS units; typically in the range of 10–20 lV) were
defined separately for each of the recording channels prior to the
beginning of the experiment. Analyses were performed in a matlab

environment (MathWorks, Natwick, MA, USA). Where synaptic
blockade is indicated in the text, a solution of 20 lm amino-5-
phosphonovaleric acid, 10 lm 6-cyano-7-nitroquinoxaline-2,3-dione,
and 5 lm bicuculline methiodide was used.

Data analysis

Spontaneous network spikes (NSs) were detected on the basis of
activity threshold, following an earlier study (Eytan & Marom, 2006).
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Fig. 1. Modular preparation. (A) A PDMS barrier with a narrow canal is
attached to the MEA to separate neural populations (‘modules’). An image of
the modular setup is shown on the left, and a schematic drawing on the right.
Four remote zones of electrodes (two within each module) are shown. (B)
Extensions projecting from the lower area of module 1 are traced by selective
neuronal labeling with the fluorescent lipophilic dye DiD, to illustrate the
restriction of projections crossing to a coupled module (see Materials and
methods). Note that the electrode layout in the thin MEAs used for these
imaging experiments is different from the one used for electrophysiological
measurements. The right panel compares the number of extensions crossing the
exit of the canal (x-axis, counted in eight labeled networks) with the number of
extensions crossing segments of the same size as the canal width, located within
the labeled module at a similar distance from the labeling locus (y-axis).
Segments in which extensions were counted are marked by rectangles in the
labeled network image. Measurements from the particular network shown on
the left are indicated by a black diamond.
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The data around each NS detection time (± 250 ms) were extracted.
Population spike count histograms (PSCHs) were constructed for each
module by registering the total spike count in an NS, binned at 1-ms
time resolution. Mean values ± standard deviations are shown, unless
mentioned otherwise. Statistical significance was determined with a
two-sided paired Student’s t-test.

For classification analyses, two spatially distinct electrical stimuli
were applied to one module, and the module responses were analysed.
The first 15 ms following stimulation were removed from evoked
responses (as elaborated in Results), and PSCHs were binned at 5-ms
time resolution. Several constraints were imposed in order to avoid
trivialization of classification efficacy evaluation: Only ‘broadly tuned
electrodes’ active in at least 70% of the NSs were considered, while
similar amount of recording units in both modules were maintained. In
addition, only fully developed NSs, in which the total firing rate in
each module exceeded the averaged firing rate across NSs, were
considered. For unsupervised classification, all of the responses of
each module were compared with each other for similarity. Distance
(dissimilarity) between each pair of PSCH vectors was computed by
city-block metric distance (also known as ‘Manhattan’ or ‘L1’
distance), following normalization to the higher total spike count
within 150 ms post-stimulus of the response pair. Distances between
vectors of the total spike count (within 150 ms post-stimulus) of each
neuron within each module, and between vectors of the time delay
from the stimulus onset to the first spike evoked by each neuron, were
also computed by city-block distance, following normalization of each
pair of vectors to the higher mean value. The contrast measure was
obtained by comparing the mean distance between responses to the
same input source with the mean distance between responses to
different input sources [subtraction of the mean distance between
responses to the same input source from the mean distance between
responses to different input sources, normalized by the sum of the
means; see Beggs & Plenz (2004)]. Supervised classification analysis
was performed with the support vector machine (SVM) algorithm with
a Gaussian radial-based function kernel, as elaborated in earlier studies
(Shahaf et al., 2008; Kermany et al., 2010). The SVM was applied to
training sets of PSCH vectors, and the resulting classifiers were then
validated with test set vectors. mcsvm1.0 (webee.tech-
nion.ac.il ⁄ people ⁄ koby), a C code package for multi-class SVM,
was applied (Crammer & Singer, 2001). Kernel parameter and
confidence intervals were set with a five-fold cross-validation
procedure.

Results

Spontaneous activity in modular networks

We cultured modular networks of cortical neurons in vitro on
substrate-integrated MEAs. This was achieved by attaching to the
substrate a physical barrier, which forces the network to develop two
well-defined modules of homogeneously distributed neural popula-
tions with similar cell densities, coupled by a narrow canal (see
Materials and methods and Fig. 1A). This structural constraint allows
for extensive connectivity between neurons within each module, and
restricted (i.e. weak) connectivity between modules. In Fig. 1B,
selective neuronal labeling with the fluorescent lipophilic dye DiD,
which diffuses retrogradely and anterogradely along the dendrites and
axons (Agmon et al., 1995; Ziv & Smith, 1996; Gan et al., 2000;
Kobbert et al., 2000), demonstrates the restriction imposed by the
canal on the connecting fibers crossing from one module to its coupled
counterpart. Neurons at the lower area of one module were labeled,
and neurites projecting from the labeled area across the canal to the

coupled module, and to remote areas within the labeled module, were
traced. An image of one labeled network is shown in the left panel of
Fig. 1B. The right panel shows measurements from eight labeled
networks. The number of neurites crossing the exit of the canal
(5.7 ± 6.5 extensions) was similar to the number of neurites crossing
each one of multiple segments (depicted in the image) of the same size
as the canal width, located within the labeled module at a similar
distance as the canal from the labeling locus (6.6 ± 4.8 extensions).
Thus, a higher number of connecting fibers projected within a module
than between modules.
The spontaneous spiking activity of the modular networks is largely

composed of synchronous spiking events that are initiated within one
of the modules, and, in most cases (91% ± 11%, n = 19 370 events,
seven networks), propagate with a short time delay into the coupled
module. Henceforth, following an earlier study (Eytan & Marom,
2006), we use the term NS to denote an individual synchronous event.
Raster plots of single NSs from one network are shown in Fig. 2A.
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Fig. 2. Dynamics of spontaneous activity. (A) Raster plots showing typical
NSs from one modular network. Solid horizontal lines separate neurons
belonging to different modules (depicted gray and black); dashed lines separate
recordings at remote zones within each module. NSs are shown according to
their module of origin: examples are shown in which they propagate between
the coupled modules (first and third columns), or stay within their module of
origin (second and fourth columns). (B) PSCHs of each module (gray and
black) from the same network shown in A, binned at 5-ms time resolution, and
averaged across NSs (a total of 5800 NSs, one network). The different columns
of B match the columns of A, representing subsets of NSs classified according
to their module of origin and whether they propagate between the coupled
modules. (C) Distribution of time delays between activity peaks of coupled
modules (left), and over similar distance within modules (right) from seven
networks.
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Figure 2B shows PSCHs (the total spike count binned at 1-ms time
resolution, as described in Materials and methods) of the activity
within each module, averaged across all NSs of the same network
shown in Fig. 2A. Figure 2A and B shows the NSs according to their
module of origin (modules are depicted gray and black), and
exemplifies cases in which activity propagated from one module to
the other or remained within the module of origin.
Where NSs propagated from one module to the other, the average

delay between the peak of activity at the module of origin and at the
downstream module was 25.98 ± 26.61 ms (averaged across all NSs
in seven networks). These delays spanned a wider range than the rapid
propagation within a module, over a similar distance (1.9 ± 16.3 ms;
Fig. 2C). Such a comparison between propagation of the activity
within and between modules was made possible by taking advantage
of the MEA layout, in which four zones of electrodes are symmet-
rically located–two within each module (Fig. 1A). In Fig. 2A,
recordings from remote zones within each module are separated by
a dashed line. As can be seen in Fig. 2A, the population activity at the
different zones within each module was highly synchronized, and
showed similar activity profiles–as if they belonged to one entity.
At later stages of the NS, following the delayed recruitment of

activity at the downstream succeeding module, synchronization of the
activity was observed among the coupled modules as well. This
synchronicity was most apparent at secondary activity peaks in the
module of origin, which occurred in close temporal proximity to the
primary peak of the downstream module (Fig. 3A). The prevalence of
the short time delays between these activity peaks (mean time delays
of 7.6 ± 29.1 ms, seven networks) is shown in Fig. 3B. This late inter-
modular synchronization suggests that, subsequent to the delayed
recruitment of the downstream module, activity reverberates across the
coupled networks with mutual activation.

Evoked activity in modular networks

When a pulse of electrical stimulation was delivered to a given
module, the neural population of that module responded in two
phases, in agreement with previous reports (Jimbo et al., 2000;
Kermany et al., 2010): an initial short phase, dominated by the activity
of a directly stimulated subset of neurons, followed by a slower wave
of activity resulting from synaptically mediated propagation through-
out the module. Traces of the first component (direct response) were
detectable in the coupled (non-stimulated) module, although these, in
themselves, were insufficient to initiate the second (slow) phase in that
coupled module. This was demonstrated by application of synaptic

blockers to one module but not to its coupled counterpart (by applying
a solution of 20 lm amino-5-phosphonovaleric acid, 10 lm 6-cyano-
7-nitroquinoxaline-2,3-dione and 5 lm bicuculline directly to the cells
of that module). Stimulation of the unblocked module resulted in a full
NS at that module, which did not propagate to the synaptically
blocked module–confirming the selectivity of the blockade for only
one module. Stimulation of the blocked module, however, elicited
only the direct responses in both modules, whereas, before application
of synaptic blockers, similar stimulation elicited full NSs that
propagated to both modules (Fig. 4). Thus, to induce an NS in the
downstream module, a full-blown NS must be evoked in the
stimulated module.
Synaptically mediated evoked activity propagated from the stimu-

lated module to the downstream coupled module with a delay that was
similar to that of spontaneously evoked NSs (averaged activity peak
delays of 26.26 ± 26.23 ms, n = 48 000 evoked NSs in nine
networks). Likewise, the overall slow-phase time–amplitude envelope
of evoked NSs was similar in nature to that of spontaneously
generated NSs. As in spontaneous NSs, not all evoked responses
propagated to the coupled module (85% ± 23%, nine networks); this
is in contrast to the consistent spread of activity within a module. The
longer propagation delays and the lower probability of propagation
between modules than within modules are indicative of the capacity of
each module to act separately from its counterpart.
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Fig. 3. Late synchronization of activity between modules. (A) PSCHs of
coupled modules (black and gray) from one NS, demonstrating late synchro-
nization of the population activity in the coupled modules. A secondary activity
peak is observed at the module of origin in close temporal proximity to the
primary peak of the succeeding module. (B) Distribution of time delays
between the primary activity peak of the downstream module and a secondary
peak at the module of origin, indicating short delays.

0

2

4

0

2

4

0

2

4

0

2

4

15 50 100 150
0

2

4

15 50 100 150
0

2

4

Module 1 Module 2 
A

Stimulated
module

Stimulated
module

B

Control conditions

Synaptic blockade in Module 1

Synaptic blockade in Module 1

Stimulated
module

Time (ms)Time (ms)

C

Sp
ik

es
/m

s
Sp

ik
es

/m
s

Sp
ik

es
/m

s

Fig. 4. An experiment demonstrating propagation of evoked responses
between coupled modules. (A) Electrical stimulation was applied to module
1 (left column). Averaged PSCHs of the responses (n = 200 evoked NSs in one
network) at the stimulated module are shown in the left column, and the
responses at the downstream coupled module (module 2) are shown in the right
column. Note the delayed propagation of activity to the coupled module. (B)
Responses of each module to the same stimulation source in module 1 (n = 120
evoked NSs), following selective blockade of synaptic activity in module 1.
Only the immediate phase of response to the stimulation is present in this
stimulated module (left column), as well as in the downstream coupled module
(right column). (C) Synaptic blockade in module 1 does not impact on the
capacity of stimulation in module 2 to evoke a full response in module 2,
verifying the confinement of the blockers to module 1. Under such conditions,
the response of module 2 to stimulation does not propagate to the coupled
(synaptically blocked) module 1 (left column). Similar results were obtained
with different stimulation sites at the same network.
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Functional benefits of modular organization; enhanced
representation capacity

We turn now to the impacts of modular organization on the efficacy of
the network in representing input sources. Although the very concept
of neural representation is far from being understood, the functional
aspect of it can be operationally viewed as the capacity to classify
distinct inputs on the basis of neuronal activity features (‘represen-
tation schemes’, ‘neural codes’) (e.g. deCharms & Zador, 2000; Luna
et al., 2005; Averbeck et al., 2006). The choice of the representational
function in the present context relies on recent results that have
demonstrated the capacity of neuronal networks in vitro to reliably
classify spatial and temporal input features using both rate-based and
time-based schemes (Shahaf et al., 2008; Kermany et al., 2010).

We applied two spatially distinct electrical stimuli (through
different stimulating electrodes) to one module, and evaluated the
capacity to distinguish between these stimuli by using the temporal
profile of evoked population activity (PSCHs), both within the
stimulated module and in its coupled module. We focus on the
representation capacity of synaptically mediated activity, beyond the
(rather trivial) capacity to classify input sources on the basis of the
direct response phase. The latter is mostly confined to the first 15 ms
following stimulation, as can be learned from synaptically blocked
preparations (92.1% ± 9.8% of evoked neural spikes that occurred
within 30 ms post-stimulus were confined to the initial 15 ms, in 860
evoked responses to seven stimulation sources, at two synaptically
blocked networks), and from previous reports (Jimbo et al., 2000;
Marom & Shahaf, 2002; Bakkum et al., 2008; Kermany et al., 2010);
therefore, the first 15 ms of activity were removed from the analysed
data. Figure 5 shows an example of averaged PSCHs in response to
two stimulation sources applied to one of the modules. In this
example, the two stimuli were applied to the lower zone of module 1
(depicted), and the responses of each recording zone in each module

were measured. Propagation along similar distances between modules
(across the lower zones of the neighboring modules) and within the
same module (across the lower and upper zones of the same module)
were examined. Upon propagation of the activity onto the downstream
coupled module, responses to the different stimuli became more
distinct. In contrast, within a module over a similar distance, the
temporal envelope of the responses displayed similar activity profiles,
and differences between the responses to the two stimulation sources
did not increase.
To directly assess the representation efficacy of each module in all

35 experiments (i.e. different input source pairs) conducted on nine
networks, their capacity to distinguish between input sources was
estimated by the use of an unsupervised classification algorithm. All
responses in each module were compared with each other for the level
of similarity, a city-block metric being used to assess the distance (i.e.
‘dissimilarity’) between each pair of responses (see Materials and
methods). A contrast measure was then applied to evaluate classifi-
cation capacity, by comparing the averaged distances between the
responses within and between input sources (Beggs & Plenz, 2004)
(see Materials and methods). Behavioral studies (Thorpe & Fabre-
Thorpe, 2001; Vanrullen, 2007) and physiological studies in vivo
(Slovin et al., 2002; Harris et al., 2003) and in vitro (Eytan & Marom,
2006; Kermany et al., 2010) indicate that stimulus selective activity
and its feedforward transfer to a downstream module occur within
several tens of milliseconds (see Marom, 2010); therefore, classifica-
tion was evaluated with the initial 50 ms of the response PSCHs. The
stimulated module’s stimulus classification efficacy was similar
whether or not NSs propagated downstream to the coupled module
(P = 0.154, paired t-test); this is an indication of the capacity of a
stimulated module to function independently of its coupled counter-
part. Figure 6 compares the classification capacities of the stimulated
and the downstream modules, in cases where the evoked activity did
propagate downstream. Distance matrices calculated from one exem-
plar experiment are shown in Fig. 6A for each module. Each matrix
shows the distances between all pairs of responses in that module.
Distances are shown in grayscale and sorted according to stimulus
identity. Marked contrast between the responses to the different input
sources, indicating high classification capacity, was observed at the
downstream module’s distance matrix (module 2, right panel). Results
from all 35 experiments are shown in Fig. 6B; statistically significant
higher contrast values (i.e. better classifications, P < 0.0001, paired t-
test) were observed at the downstream module (module 2). Enhance-
ment of classification at the coupled module was also observed by
evaluation of the entire PSCH length (P = 0.0079). In addition, the
enhanced classification was not limited to the rising phase, as
significantly higher contrast values at the downstream modules were
observed by evaluation of time windows centered around the peaks of
the evoked activity (P = 0.0013).
In 29 of the experiments, conducted on eight networks, the pairs of

stimuli were delivered to the lower zone of one of the modules, and
PSCHs were evaluated for each of the modular network’s zones (in a
similar manner as in the example shown in Fig. 5A). The stimulation
site pairs were chosen arbitrarily from the point of view of their
position relative to each of the adjacent neighboring zones, with
different stimulating electrode positions being examined. Classifica-
tion capacity was significantly enhanced when activity propagated
through the narrow canal between the lower zones of the coupled
modules (P < 0.0001), but not by propagation along a similar distance
to the upper zone of the stimulated module (P = 0.71) (mean contrast
values and 95% confidence intervals computed with Student’s t-test
were 0.041, 0.02–0.062, 0.043, 0.021–0.065 and 0.137, 0.096–0.178
in the stimulated zone, upper zone of the same module, and lower

Module 2Module 1

spikes/ms
0.5

50 ms

s1

s2

Fig. 5. Representation of spatially distinct inputs by coupled modules. An
example of the responses of a network to two spatially distinct input sources,
delivered to one module, is shown. The stimulating electrodes are indicated by
different colors in a schematic diagram of the modular structure. In this
example, the two stimuli were applied to the lower zone of module 1.
Responses of neural populations in the different zones within the stimulated
and the downstream coupled module (n = 476 evoked responses) are presented
as averaged PSCHs in each zone, colored according to the identity of the input
source. Note the enhanced separation of responses in module 2, as compared
with the stimulated module 1. No apparent effect of distance within a module is
observed.
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zone of the coupled module, respectively). Significantly enhanced
classification at the lower zone of the coupled module relative to the
upper zone of the stimulated module was observed as well
(P < 0.0001). The position of stimulation sites relative to each of
the neighboring zones did not affect the direction of the results. As can
be seen in Fig. 5A, the response to stimulation s2, which was closer to
module 2, produced a longer delay in the coupled module than s1. The
responses of the coupled module to the closer stimulus showed longer
delays in 16 of the 35 experiments, and shorter delays in the rest of the
experiments. This indicates that the observed enhancement of the
differences between responses to distinct input sources is not affected
by propagation along different distances but by propagation through
the narrow canal.
Interestingly, the enhanced representational capacity of a down-

stream module was not unaffected by the nature of the representation
scheme used (i.e. ‘neural code’): the results of unsupervised classi-
fication based on two other representation schemes (see Materials and
methods) are shown in the lower panel of Fig. 6B. When vectors of
the time delays from stimulus onset to the first spike evoked by each
neuron were considered (squares), classification in the downstream
module was enhanced as well (P < 0.0001). However, classification
based on the total spike counts of individual neurons (in a 150-ms time
window post-stimulus, triangles) degraded when activity propagated
out of the stimulated module (reduced classification, P = 0.004).
Enhancement of classification capacity by PSCHs in downstream

coupled modules was also demonstrated by use of a non-parametric
classification technique, a general purpose supervised classifier
Support Vector Machine (SVM) with an adaptive Gaussian kernel
(Ben-Hur et al., 2008; Shahaf et al., 2008; Kermany et al., 2010) (see
Materials and methods for details). The SVM was trained to classify
the different input sources at different time windows following
stimulation. A separation hyper-plane was constructed on the basis of
labeled examples of the data, and a lower bound on classification
capacity was estimated by its performance on a test dataset. Figure 7
compares the classification capacities of the stimulated and the
downstream modules. Classification capacity was quite good in both
modules, being highest at the earlier stages of the synaptically
mediated responses, and decaying at later times. Classification was
significantly better at the downstream coupled module (P = 0.0028
and P = 0.0039 at time windows of 16–50 ms and 51–75 ms post-
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(computed by city-block distance; see Materials and methods) are shown in
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in the right panel. Separation between responses to different stimuli (observed
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contrast measure (see Materials and Methods) is used, reflecting the level of
similarity among responses to the same input source relative to different
sources – indicating classification efficacy. For each network, the contrast
measure for the downstream module (y-axis, module 2) is plotted against that of
the stimulated module (x-axis, module 1); n = 35 classification task experi-
ments conducted on nine networks. The upper panel shows contrast measures
obtained with the initial 50 ms of the PSCHs. Significantly higher classification
capacity is observed at the downstream coupled module (P < 0.0001). The
lower panel shows contrast measures applied on other representational
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classification is significantly enhanced at the downstream module (P < 0.0001).
Triangles show evaluation of the total spike counts (SCs; in a 150-ms time
window post-stimulus) of individual neurons; significantly lower classification
at the downstream module is observed (P = 0.004). The reduced classification
is insignificant when classification is based on spike counts in shorter time
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stimulus, respectively), an advantage that vanished at the late stages of
the responses.

Discussion

Akey advantage of amodular system, relative to a homogeneous system
of a similar size, is the capacity of the former to enhance its functionality
by lumping the different modules together (functional integration),
while–at the same time–maintaining the autonomy of each individual
module (functional differentiation). Here, we demonstrated an instan-
tiation of this advantage in a simple modular in vitro design of cultured
cortical neurons, in the context of input representation – a most basic
function exercised by the brain. We observed functional differentiation
in the formof an autonomous capacity of eachmodule in itself to classify
(represent) spatial input sources, separately from its coupled module.
This classification capacity of an individual module is similar to
previously reported results (Shahaf et al., 2008; Kermany et al., 2010),
and is independent of whether or not activity spreads to the coupled
module. Functional integration was manifested as a significant
enhancement of classification capacity when the activity evoked in
one module propagated to the downstream coupled module. The
observed enhancement of representation capacity is enabled by the
modular structure itself, which imposes sparse connectivity between
modules, and does not occur over a similar distance within an
extensively connected homogeneous network. Furthermore, we showed
that the weak coupling between the two modules imposed a 20–30-ms
delay in the propagation of input selective activity, within the range of
delays observed in vivo (Thorpe & Fabre-Thorpe, 2001; Slovin et al.,
2002). The enhanced capacity of a downstream module to classify an
upstream input source degrades within � 100 ms of the application of
the stimulus. The main result–enhanced representational capacity in the
downstream module–is sensitive to the representation scheme (‘neural
code’) used: modularity enhances classification when the temporal
features of the population activity are considered, but not when
classification relies on spike counts of individual neurons.

We offer our interpretation of an enhanced population representa-
tion scheme in terms of a relative decorrelation effect that a narrow
canal of connectivity imposes on the propagated activity. When
activity propagates within one module through the many extensively
connected neurons involved, small differences between responses to
different stimulation sources are dissipated by interference. In contrast,
the activity forced to propagate into a downstream module through the
narrow canal is relatively immune to the effect. This relative
decorrelation, imposed by the canal, effectively enhances the classi-
fication contrast.
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